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How far can a boundary coating material be carried downstream 
in turbulent pipe flow? 
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Abstract. For a material that strongly attaches to the pipe wall the e-folding downstream attenuation distance is 
shown to be half the pipe radius multiplied by the square of the ratio between the bulk and friction velocities. This 
distance of a few hundred radii is significantly larger than the few tens of radii needed for cross-sectional mixing. 
Potential complexities such as departures from the von Kfirmfin logarithmic velocity profile and shear dispersion are 
investigated but found to be relatively unimportant. Releasing the coating material at the centre of the flow, rather 
than uniformly across the flow, results in an uncoated entry region, but gives a one third increase in the 
concentrations far downstream. 

1. Introduction 

On a labora tory  scale it is possible to coat the inside of an oil pipeline by advecting ultrafine 
particles of the coating material  in a laminar flow along the pipeline. On a full scale with 
turbulent  flows the process is i ne f fec t ive -  the coating only extends a few hundred pipeline 
radii downstream.  A partial explanation for the difference is that the length scale for the 
coating material  to reach and stick to the wall depends upon the diffusion across the pipe; in 
a laminar  flow the diffusivity has tiny molecular  values while in a turbulent  flow the turbulent  
eddy diffusivity is several orders of magnitude larger. However ,  this partial explanation 
would suggest a penetra t ion distance of an eddy decay scale of a few tens rather  than a few 
hundreds  of  radii. The extra factor of  ten is found to be associated with there being a 
diffusion boundary  layer near  the pipe wall. (For commercial  reasons neither the laminar  nor  
the turbulent  exper imental  results were published). 

2. Simple models for the flow and mixing 

The  mathemat ica l  l i terature on shear flow dispersion of heat  or  chemically reacting species 
has been  focused principally upon laminar flows (e.g. Sankarasubramanian  and Gill [1], 
Lungu and Moffat t  [2]). The constant molecular  diffusivities and simple velocity profiles 
have facilitated the derivation of neat  expressions for the key bulk measures  of  the combined 
t ranspor t  and loss process (the effective t ransport  velocity and the loss rate). For  turbulent  
open-channel  flow with a parabolic eddy diffusivity and a v o n  K~irmfin logarithmic velocity 
profile, Smith [3] and Purnama [4] have obtained similarly neat expressions for the effect of  
absorpt ion at the bed. Such quasi-laminar t reatments  of turbulent  flows rely on there being 
length or t ime scales well in excess of the decay scales for a turbulent eddy. 

Taylor  [5] showed that for turbulent pipe flow the departures  f rom the von Kfirm~in 
velocity profile had to be accounted for to get an accurate evaluation of the shear dispersion. 
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Accordingly, for the velocity profile w we include a function f which characterises the 
departure from the von Kfirmfin wall layer: 

w(,7) = # ( 1  + (2.1 a) 

with 

3 
W07 ) = In(1 - 7/+ r/,) + ~ + r/,(2 + ~/,) In 77, + 7/, - (1 + r/,) ln(1 + , / , )  

+ r/ 'zf d~ / ' -  (1 - 'O '2)f  dr/' , (2.1b) 

r l = r / a  and e = w , / k ~ .  (2.1c,d) 

Here ff is the cross-sectionally averaged velocity, w ,  is the friction velocity (typically ~/15) ,  
k is von Kfirmfin's constant (about 0.4), r is the radial coordinate and a is the radius of the 
pipe. The awkward constant terms involving ~7,, ensure that the profile W07 ) gives zero 
contribution to the cross-sectionally averaged flow: 

fo 1 2"oW(r/) dr /=  O. (2.2) 

To satisfy a no slip boundary condition on r = a the function W07 ) has the large negative 
value - 1 / e  on 77 = 1. Equivalently, the very small dimensionless roughness height 7 ,  must 
have the value 

r/, = exp e 2 fr/,2 dr/' - , / , (2 + r/,) In r/, - 7/, + (1 + 7/,) In(1 + r/,) . (2.3) 

Typically e has the value 1/6 and ~/, the value 5 x 10 -4. Thus, the ~7, constant terms in 
equation (2.1b) are numerically insignificant and can be ignored. 

The family of velocity profiles (2.1a) can be associated with eddy viscosity profiles 

kw,a71 r/(1 - r /+  7/,) 
v(rl) = dW/drl k w , a  1 - (1 - r /+  ~/,)f (2.4) 

(i.e. parabolic in the limiting case f =  0). Using Reynolds analogy, we shall use this same 
formula to determine the radial eddy diffusivity K07 ). The concentration c(r, z, t) of the 
coating material is assumed to satisfy the advection-diffusion equation 

1 
O,c + wOzc - r Or(rrOrc) = O, (2.5) 

where t denotes the time and z is the longitudinal position. 
At  the boundary there is deposition of the coating material. To allow for imperfect 

attachment we assume the boundary condition 

KOrC+/3c=O on r = a .  (2.6) 

The bed absorption coefficient/3 characterises the strength of the initial attachment. There is 
no absorption when/3 = 0 and total retention when/3 = ~. 
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At the discharge position z = 0 we assume that the rate of discharge q(r, t) of the coating 
material is specified: 

w c = q  at z = 0 .  (2.7) 

The discharge process is assumed to leave the velocity profile undisturbed. For the 
subsequent analysis it is convenient to assume that for times t < 0 the concentration c and the 
discharge rate q are identically zero. 

Guided by the work of Smith [3] and Purnama [4] concerning open channel flow, we 
introduce the non-dimensional measures 

= ( w ,  ")2 z _ w ~t _ /3ff (2.8a,b,c) 
, - , 2 Z ", ff~ / a T wa B f l f fp+w,  

of the longitudinal position, time and wall absorption. It is significant that the implicit length 
and time scales are long by a factor ~ / w ,  compared to those of an individual turbulent eddy. 
Total retention (fl = ~) is now represented by B -- 1. The equations satisfied by c(7/, Z, T) 
are 

Oc Oc 1 0 (r/2(l-- ' r /+~'/ ,)  OC'~ 
e -O-T + e { l + e W ( 71) } O Z "q O v \ l = O - ~  -+ -~, ) f oh?,] = 0 ,  (2.9a) 

with 

77, Oc eB 
l + ~ ,  f O + --1--Z--~ c = O on ~7=1 (2.9b) 

and 

{ l + e W ( 7 / ) } ~ c = q  at Z = 0 .  (2.9c) 

These equations involve just two key dimensionless parameters e and B instead of the:five 
parameters a, fl, k, ~,  w ,  in the original formulation. It is elementary to revert from a 
solution c(,), Z,  T) in dimensionless variables to a solution c(r , z , t )  in conventional 
dimensional variables. 

3. Spatial modes 

To focus our attention upon the spatial structure along the pipeline we take Laplace 
transforms with respect to dimensionless time: 

= f o  e x p ( - p T ) c  d T .  (3.1) 

The advection-diffusion equation, boundary and entrance conditions transform to 

ep~+ T+W(n) oz n on 1-( i - -n+n,) fTn =0, (3.2a) 
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with 

rl, 06 eB  
l+~,f0~7+-i--S--B-6=0 on ~7=1, 

and 

(3.2b) 

( l + e W ) f f ~ 6 = 0  at z = 0 .  (3.2c) 

On the axis ~7 = 0 the concentration c and the Laplace transform 6 are assumed to be 
nonsingular. 

A separation of variables solution for ~ is 

f01 
- ~  ¢^ ¢. 

wc = ~ aI~(n; p) exp(-/x~Z) 2n qq~(~7 , P) d~7', (3.3) 
n=0 

The eigenmodes ~n(~; P) together with their eigenvalues/z~(p) satisfy the Sturm-Liouville 
equations 

d d.o) 
d~? \ 1 : ( - 1 : ~  +~?,)f d~? ] + E(~'Ln(1 + 8 W )  -p~ l~ t f  n = O ,  (3.4a) 

with 

"q, dq] . e B 
- - + ~ % = 0  on ~7=1, (3.4b) 1 + n , f  dr/ 

and 

f01 27(1 + eW)qP~ d~7 = 1 (3.4c) 

It is conventional to index the modes with/.,~ increasing 

~0 </x~ < - - . .  (3.4d) 

Near the discharge position z = 0 many modes may contribute to 6, depending upon the 
shape of the discharge. However, the combined effects of diffusion across the pipeline and 
absorption at the wall rapidly attenuate the higher modes. The eventual penetration of 
coating material along the pipeline is determined by just the zero mode contribution 

f01 v~6 -- ~0(*/; P) exp(-/%Z) 2~7'0~007'; P) dn ' .  (3.5) 

To determine the time dependence of the concentration c(~, Z, T) far from the discharge 
position, we need to perform a Laplace inversion of equation (3.5). 

In the triple limit B = 0, f = 0, W = 0 the eigenmodes are Jacobi polynomials (Abramowitz 
and Stegun [61, chapter 22) 

a'Itn('r/, p )  = (n -t- 1) l /2p(° '1)(2"r / -  1), (3.6a) 
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n(n + 2) 
/x,,(p) + p .  (3.6b) e 

Hence,  we can estimate that the e-folding length for the n = 1 mode to decay relative to the 
n = 0 mode is e/3. In dimensional terms this mixing length is 

1,~a 
3kw, (3.7) 

i.e. about twelve radii downstream of the discharge position. 

4. Factoring out the wall layer 

In the limit as e=(w, /k~)  tends to zero the differential equation (3.4a) and the 
normalisation (3.4c) are satisfied by the rudimentary approximation 

q~<0 ° )=  1. (4.1) 

However,  this approximation does not satisfy the absorption boundary condition (3.4b). A 
matched asymptotic expansion reveals that there is a wall layer of size ~7, in which qt 0 
exhibits behaviour similar to that of the velocity profile (2.1a,b). It is this diffusion boundary 
layer that prolongs the penetration process by a factor e -1. Guided by the work of Smith [3] 
and of Purnama [4], we represent the zero mode q~0 in terms of the velocity profile W0?): 

~o(7/; p) = [1 + eBW(rl)ldPo(rl; p). (4.2) 

The definitions (2.1b), (2.3) of W and , / ,  imply that on ~/= 1 the square bracket has the 
value (1 - B). 

The Sturm-Liouville equations satisfied by the modified eigenmode qb 0 and the eigenvalue 
/z o are: 

d (r/2(1-'r/q-'q*) r4 -~ ) 
d~7 \l----(1--~--~,)f  D+eBW]2 Oo +e( t%-2B-p) ( l+eW)[1  

+ e22B[1 + eBW](1 + B + eBW}WTlaPo + e~p[1 + eBWl~WnOo = o,  

with 

+ eBW]2"rlt~o 

(4.3a) 

ddP o 
= 0  on ~7=1,  (4.3b) dn 

and 

f01 2r1(1 + eW)[1 + eBW]2dP~ d~ = 1. (4.3c) 

On the axis r 1 = 0 the modified eigenfunction ~0 is assumed to be non-singular. 
Integration of equation (4.3a) from r I = 0 to ~7 = 1 yields a formula for the eigenvalue 

/Xo(p): 
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fo 1 (t'o - 2B - p )  2n(1 + eN)[1 + eBW]2Do dn 

Io 1 fo 1 = - e 2 B  2~[1 + eBW]{1 + B + eBW}WD o d ~ -  ep 2n[1 + eBW]2WDo d~7. (4.4) 

This formula will be used to obtain approximations to tx o from approximations for D o. 

5. Asymptotic expansions 

In the limit as e = ( w , / k f f  0 tends to zero all the equations (4.3a,b,c) are satisfied by the 
approximation 

D(o ° ) =  1.  (5.1) 

There  is now no need for matched asymptotic expansions. Any wall layer has been explicitly 
accounted for in the factorisation (4.2). From the integral formula (4.4) we can evaluate the 
first approximation to the eigenvalue 

/X~o °) = 2B + p .  (5.2) 

The neat form of this result confirms the appropriateness of the nonlinear definition (2.8c) 
for  the dimensionless boundary absorption coefficient B. It deserves emphasis that equations 
(5.1) and (5.2) do not involve the velocity profile W, so are not influenced by any departure 
f rom the von Kfirmfin velocity profile. 

Equat ions (4.3) and (4.4) have been written in a way which emphasises that corrections to 
D 0 a n d / %  do not arise until second order  in terms of the small parameter  e: 

2 .~(2)1  
q ~ o = l + e w o  t , ~ 7 ; p ) + " ' ,  (5.3a) 

3 (3) /% = 2B{1 - g2(2B + B21I} +p{1  - eZ2BI} + e tz o (p) + ' " ,  (5.3b) 

where 

f0 
1 

I = 2rlW 2 d~.  (5.3c) 

We note  that if f = 0 then 

5 
I -  4 " (5.4) 

The  integrand 2r/W 2 is largest near the wall where the von K~irmfin profile is most accurate. 
Hence ,  deviations from the von K~irm~in profile will not effect I significantly. 

If we neglect D~0 2), /X(o 3) and higher order terms, then the Laplace transform solution (3.5) 
becomes 
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~6 = [1 + eBW(n)] exp( -2B(1  - eZ(2B + Bz)I}Z - p { 1  - e22BI}Z) 

f01 x 2n'[1 + BW(n')IO aT'. (5 .5 )  

The Laplace inversion can be performed exactly: 

~c(n, z ,  T) = [1 + eBW(n)l exp(-2B{1 - eZ(2B + Bz)I}Z) 

x 2n'[1 + eBW(n')lq(n', 7"-  {1 - e22BI}Z) d r ' .  (5 .6 )  

Thus, the concentration signal associated with a time dependent discharge attenuates 
exponentially and travels at constant speed along the pipeline. The distribution across the 
flow of the suspended material exhibits a wall-layer structure, diminishing by a factor (1 - B) 
at the wall. The effective source strength involves a weighted average across the flow, with 
the identical wall layer weighting. A discharge at the wall is a factor (1 - B) weaker in its far 
field influence than a uniform discharge (i.e. a fraction B deposits on the wall close to the 
entry before equilibration across the flow has been achieved). 

6. Attenuation along the pipeline 

To convert the solution (5.6) into conventional dimensional variables we introduce the 
attenuation rate A0(e ) and the effective transport velocity w0(e): 

A°=2B(-~-) 2 { 1 - e 2 ( 2 B + a  B 2 ) I + ' " }  , (6.1a) 

W 0 = I~{1 -- E22BI + . . . }  - 1 .  (6 .1b)  

The solution for the concentration far from the discharge position is 

fo wc(n, z, t) = [1 + eBW(n)] exp(-A0z ) 2n'[1 + eBW(n')]q n', t - dr/ ' ,  (6.2a) 

For the cross-sectionally averaged concentration ? or a uniform rate of discharge q = ~(t), 
there are minor simplifications 

fo ~?(z,  t) = exp(-Aoz ) 2n'[1 + eBW(n')lq n', t - dr / ' ,  (6.2b) 

wc(n, z, t) = [1 + eBW(n)] e x p ( - A 0 z ) 4 ( t -  ~00) ' (6.2c) 

The e-folding distance for the attenuation of the amount of coating material remaining in 
the flow is 

1 a ( _ ~ , )  2 
a o 2B {1 + e2(ZB + B2)I+..} 

a ( _ ~ , )  2 w ,  /3ff 
-2 l+-~+e2I 2+2(/3ff+w,~ +""  (6.3) 

i.e. about a hundred radii downstream. Unless there is perfect initial attachment (/3 = ~), 
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the penetration can be increased by increasing the flow speed ff (to speeds of order two 
hundred times/3). 

It is a well-established feature of laminar shear dispersion with boundary absorption that 
the loss rate asymptotes to a constant value as/3 tends to infinity (Sankarasubramanian and 
Gill [1] Fig. 2; Lungu and Moffatt [2] Fig. 1). The distinctive features of turbulent flows are 
the simple/3 dependence (Smith [3], Purnama [4]), the weakened dependence upon ~ and 
the much reduced penetration (a hundred rather than tens of thousands of radii down- 
stream). 

For the effective transport velocity w 0 the removal of slow moving particles near the wall 
has the effect of increasing the averaged speed experienced by the remaining particles. The 
wall layer character of the depletion process in turbulent flows implies that relatively few 
particles are involved and the speeding up is very slight. For example, in the double limit 
f =  0, /3 = o~ the fractional increase in speed is only e25/2 i.e. about 0.07. By contrast, for 
laminar pipe flow the fractional increase in speed when/3 = oo is 0.564 (Gill and Sankarasub- 
ramanian [1], Lungu and Moffatt [2]). 

7. Second-order corrections 

The order e 2 terms in equations (4.3a-c) can be satisfied: 

1 
~(2)(~/; p ) =  - B ( 1  + ~ B ) I  + {2B(1 + B) + p}g(*/) (7.1) 

where the centroid displacement function g(~/) satisfies the equations 

d ( T / 2 ( 1 - ~ + ~ , )  d ) 
d~? 1 ~ - ~  +7/ , ) f  d~/g = -~/W, (7.2a) 

with 

d g =  
d,/ 0 on 7 /=1 ,  (7.2b) 

and 

f01 2~/g dr t = 0. (7.2c) 

The function g characterises the interaction between velocity shear and mixing, g is positive 
on the axis ~1 = 0 and decreases to the negative value -1/2  on the wall ~7 = 1. Since g does 
not exhibit a wall layer, we can neglect r/, in both sides of equation (7.2a). If f = 0 then we 
can use Jacobi polynomials to represent g: 

n~=l (n + 1) p(nO,1)(2r/- 1) (7.3a) g(*l)= - 2  = nZ(n + 2) 2 

with 
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2 1 5 
g(0) = 1---~--~=0.697, g(1) = - 3  = -0 .675 .  (7.3b,c) 

Deviations from the von K~rm~in velocity profile would effect the size and shape of g07) (i.e. 
the function f occurs explicitly on the left hand side of equation (7.2a) and implicitly on the 
right-hand side). 

Correct to order e 2 the solution for the concentration far along the pipe can be written 

ffc(rt, z, t) = [1 + eBW(rl)]{1 + eZ2B(1 + B)g(r/)} exp(-Aoz - e2B(2 + B)I) 

x 2rt'[1 + eBW(rl')]{1 + e22B(1 + B)g('q')} 

( z 
× q 7/', t - - -  + [g07) + g07 )] d~ ' .  

W0 
(7.4) 

The changes from equation (6.2a) are: i) a perturbed distribution of particles across the pipe 
involving absorption, shear and mixing; ii) an enhanced loss of particles which we can 
attribute to entry effects while the depleted concentration wall layer is established; iii) time 
displacements which allow for the reduced (increased) time lapse when observations or 
releases are made in a fast (slow) part of the flow. 

The best that can be done to get coating material far along the pipeline is to make the 
release on the axis ~/' = 0. For a v o n  Kfirm~n velocity profile we can use the results (2.1b, 
7.3b, 7.4) to assess that the effective source strength is enhanced by the factor 

3 ~.2 

relative to a uniform discharge. 

8. Shear dispersion 

From equation (4.4) the second-order approximation for ~0 yields a third-order result for 
the eigenvalue /x0(p): 

~ £ ( 3 )  = B2(2B +p)j  _ (2B(1 + B) + p ) 2 K ,  (8.]a) 

with 

fo' fo J = - -  2 ~ W  3 d~ ,  K = 2riWg d~7. (8.1b,c) 

We record that if f = 0 then 

7 w,= (n + 1) 7 
J = ~-, K = 4 n=12" n3(n + 2)3 - ~'(3) - ~ = 0.327. (8.2a,b) 

= 

(The explicit if-function formula for K was derived by H.K. Kuiken). Deviations from the 
Kfirmfin velocity profile would effect J very little but effect K substantially (because of much 
weaker importance of the near-wall contribution where W is large negative). 



60 R. Smith 

The constant terms in equation (8. la) yield a third-order correction to the decay rate along 
the pipe 

A 0 = 2 Z  { 1 -  e2(2+ B)BI+ e3(BZJ-2B(1 + B)2K) + . . . } ,  (8.3a) 

Sensitivity to the velocity profiles arises principally at order e 2 via the K coefficient. 
Similarly, the p terms in equation (8.1a) extend the series expansion for the transport 
velocity (with sensitivity at order e 2 to the velocity profile): 

w 0 = ~{1 - e228I + e3(B2j - 48(1 + B)K) + . - . }  -1.  (8.35) 

The p2 term in equation (8.1a) corresponds to shear dispersion with effective longitudinal 
diffusivity 

aw:~ 
O = K k-----T-. (8.4) 

This result is independent of the absorption coefficient B. The numerical factor K as given in 
equation (8.2b) is low by about  a factor of 2. Taylor [5] gave a numerical quadrature 
incorporating the experimental departure from the von Kfirm~in velocity profile and giving 
near perfect agreement with his experimental results for the shear coefficient 

aw:~ 
D =0 .64  k3 . (8.5) 

In a diffusion type model for the coating process the discharge strength q in the solution 
(7.4) for cO? , z, t) would need to be replaced by the smoothed (mollified) source strength 

f0°( ) 
a 

- -  t G r , z - [ g ( ~ 7 ) + g ( r / ' ) l k 2  q ( n , t - r )  d r ,  

with 

(8.6a) 

w0 ex.( w2 
G(r, ~) (~D,r)l/2 ~D--~ / - -~-expk, - -D--  ] erfC~(aDr)l/z). (8.6b) 

The mollifier G is the solution of a diffusion equation with a sudden release at r = 0, ff = 0. 
On the length and time scale (2.8a,b) of the coating process, the mollifier G can be 
approximated by a Gaussian with respect to time: 

1 ( (r -~/Wo)2.~ 2 D~ 
G(r, ~) (27rOt2)1/2 exp 2cr2 ] with o" r = 2 w03 • (8.7a,5) 

The temporal smoothing associated with the shear dispersion is unimportant unless the 
discharge varies on a time scale comparable with (or less than) the temporal spread o-Zr. 

9. Illustrative example 

As a quantitative example we specify the dimensional values 

a = 0 . 2 m ,  ~ = 0.08 m s - i  -1 , w ,  = 0.0053 m s (9.1) 



Boundary coating and turbulent pipe flow 61 

(an oil pipeline with a flow of 10 litres per  second).  For the additional dimensionless 

pa ramete r s  we take 

k = 0 . 4 ,  / 3 = ~ ,  ( B = I ) ,  I = 1 . 2 5 ,  J = 1 . 7 5 ,  K = 0 . 6 4 .  (9.2) 

Thus,  the expansion pa ramete r  e has the value 

w .  1 (9.3) 
e - k f f j -  6 • 

The  series expansion (8.3a) for the at tenuation rate along the pipeline is 

A 0 = {1 - 0.104 - 0.015 + .- -}0.044m -z = 0.039m -1 - 1 (9.4) 
25.5m " 

The  size of  the terms to diminish reasonably rapidly. As noted earlier, the e-folding distance 
is about  a hundred pipe radii. 

The  series (8.3b) for the effective transport  velocity is 

w 0 = {1 - 0.069 - 0.015 + ..- } --10.08 m s -1 = 0.0873 m s -1 (9.5) 

Again there is reasonably rapid decrease in the terms. The speed w 0 for the coating material  
is slightly larger than the mean velocity ff of the bulk fluid. The t ime to traverse one 

e-folding distance is about  290 seconds. 
In the second-order  version (7.4) of the solution for the concentrat ion,  the t ime 

displacements  at the axis ~7 = 0 and at the wall ~7 = 1 are 

g(O)a g(1)a 
k2~-~-- - 10.9 s ,  k21,  ~ - - 1 0 . 5  s (9.6a,b) 

Thus,  the concentrat ion signal arrives very slightly (of order  e 2) early in the faster central 

par t  of  the flow and late in the slower moving fluid near  the wall. 
Taylor ' s  [5] formula  (8.5) for the shear dispersion coefficient gives 

D = 0.011 m 2 s 1 (9.7) 

Thus,  over  a distance of one e-folding, the temporal  spread o-r grows to 

o'~ = = 29 s .  (9.8) 

We can ignore shear dispersion if the release of  coating material  takes place on a longer t ime 
scale than this. 

I f  we envisage the coating process as having a t ime scale comparable  with the travel t ime 
for one e-folding (290 seconds), then neither the t ime displacements (9.6a,b) nor  the 
t empora l  spread are significant. It  deserves comment  that, relative to the travel t ime, cr~ is of  
order  e 3 /2  and is therefore  larger than the time displacements (9.6a,b). However ,  for a 
smoothly  varying rate of discharge the tempora l  smoothing has a quadratic effect of order  

2 o-7-, so is even less important  than the displacements. 
In this illustrative example  of perfect  boundary  absorption it would be pointless to make  a 

wall release,  since none of the coating material  would bet beyond the discharge position. 
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F r o m  e q u a t i o n  (7.5) we find that  relat ive to a un i fo rm release the effective far field s t rength  

of a cen t re  l ine release is e n h a n c e d  by a factor 

[1 + 0.25}{1 + 0.077 + . . . }  -- 1 .34.  (9.9) 

The  price paid for this e n h a n c e d  pene t r a t i on  would  be an init ial  region of one  mixing length  

al~ 
- 2 .5m (9.10) 

3 k w  , 

before  much  coat ing mater ia l  reached the wall. 
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